The Vaterite-Type ABO_{3} Rare-Earth Borates*

By W.F.Bradley
Dept. of Chemical Engineering, University of Texas, Austin, Texas, U.S.A.
D.L. Graf
Illinois State Geological Survey, Urbana, Illinois, U.S.A.
and R.S. Roth
National Bureau of Standards, Washington, D.C., U.S.A.

(Received 27 October 1964 and in revised form 4 June 1965)

Abstract

Approximate models are proposed for the room temperature and the high temperature modifications of the vaterite-type rare earth borates. A low temperature model based on three-membered rings of borate tetrahedra is found to be reconcilable with the X-ray powder diffraction data, the optical properties, and the infrared absorption character. A high-temperature model containing triangular borate ions is relatable to the CaCO_{3} vaterite modification.

Introduction

A survey of polymorphism of ABO_{3} type rare earth borates by Levin, Roth \& Martin (1961) established that borates of the rare earths from lutecium to samarium exhibited one polymorph recognizably related to vaterite $\left(\mathrm{CaCO}_{3}\right)$, and that each room-temperature product was an inversion from a high-temperature form dimensionally much more closely related to vaterite, but subject to excessive fragmentation on cooling. The room-temperature forms were found to be optically positive with low birefringence. X-ray diffraction data were limited to the powder method.
Major features of the vaterite and the rare earth vaterite powder diffraction diagrams are all indexable on the basis of hexagonal cells of two formula-weight content.
A description by McConnell (1960) of a naturally occurring vaterite took account of the observation by Bunn (1945) that high positive birefringence demands that the CO_{3} groups stand vertical, and that any hexagonal or trigonal unit cell must contain $6 \mathrm{CaCO}_{3}$. On preferred-orientation electron diffraction diagrams, McConnell observed two features which required the larger cell, and adopted it for indexing, noting that an alternation of orientation of successive vertical triads was required.
Powder data for all compositions fix cation positions as $0,0,0$ and $0,0, \frac{1}{2}$ in the two-formula subcell. Bartram \& Felten (1961) and Newnham, Redman \& Santoro (1963), working on low-temperature rare earth borates, and Kamhi (1963), on vaterite, have each evaluated anion parameters which represented aver-

[^0]aged positions within this subcell. Newnham et al. further noted that ordered arrays in the six-formula cell could exist, and cited one arrangement in the space group $P 6_{3} / \mathrm{mcm}$ which provides six vertical BO_{3} groups.

Infrared absorption analyses by Weir \& Lippincott (1961) and Weir \& Schroeder (1964) disclosed that boron in the low temperature rare earth vaterite-type borates is in fourfold coordination. The B-O stretching frequencies are about $250 \mathrm{~cm}^{-1}$ lower for the vateritetype borates than for the v_{3} mode in the calcite isotype, LuBO_{3}, or the aragonite isotype, LaBO_{3}.

It is the objective of this analysis to propose models for the low and high temperature borates which are consistent with the optical and absorption properties, and with the X-ray powder diffraction diagrams.

Data for YbBO_{3} are taken as typical for the group. For the low temperature form $a_{0}=6 \cdot 46, c_{0}=8 \cdot 74 \AA$, $Z=6$, and $c / a=1 \cdot 341$; for the high temperature form, $a_{0}=6 \cdot 99, c_{0}=8 \cdot 34 \AA, Z=6$, and $c / a=1 \cdot 193$. For vaterite, $a_{0}=7 \cdot 135, c_{0}=8 \cdot 524 \AA$, and $c / a=1 \cdot 195$.

The low temperature form

Integrated relative intensities were collected by diffractometer technique from the YbBO_{3} powder prepared by Levin, Roth \& Martin (1961). The data, which are summarized in Table 1, include five lines with intensities only 5% to 10% above background and six even weaker or doubtful features which can be indexed only in the six-formula cell. Indexing was facilitated by the tabular morphology of the grains. Powder lines are of graded sharpness, ranging from sharp for reflections with $l=0$ to increasingly broad with increasing l indices. At large diffraction angles, $\alpha_{1}-\alpha_{2}$ resolution becomes apparent for reflections with $l=0$.

Relationships between the true hexagonal cell with $a_{0}=6 \cdot 46 \AA$ and the two-formula subcell with $a^{\prime}=a_{0} / \sqrt{ } 3$ are best defined if subcell origins are shifted to $\frac{1}{2}, \frac{1}{2}$.

Table 1. Powder diffraction data for YbBO_{3}
Probable space group $P 6 c 2: a_{0}=6 \cdot 46, c_{0}=8 \cdot 74 \AA, Z=6$

Filtered Cu radiation						
$d_{\text {calc }}(\mathrm{A})$	$d_{\text {obs }}(\AA)$	$h k \cdot l$	Integrated diffractometer count* \dagger	Normalized $F_{\text {obs }}$	$F_{\text {calc }} . \exp \left\{-0.2(\sin \theta / \lambda)^{2}\right\}$	
					I	II
$5 \cdot 60$		1I•0	-		12	16
$4 \cdot 37$	$4 \cdot 36$	$00 \cdot 2$	1240	334	325	330
$3 \cdot 45$	$3 \cdot 44$	1I.2	(7)	13	21	26
$3 \cdot 23$	$3 \cdot 23$	$11 \cdot 0$	3060	417	312	317
3.03	$3 \cdot 02$	$11 \cdot 1$	90	56	33	30
$2 \cdot 80$	$2 \cdot 80$	$22 \cdot 0$	(<4)	<17	16	11
$2 \cdot 60$	$2 \cdot 60$	$11 \cdot 2$	3114	378	354	356
$2 \cdot 356$	$2 \cdot 35$	$25 \cdot 2$	(< 4)	<15	20	17
$2 \cdot 185$	$2 \cdot 18$	$00 \cdot 4$	205	290	309	315
$2 \cdot 163$	2.16	$11 \cdot 3$	20	33	44	47
$2 \cdot 114$	$2 \cdot 11$	21.0	(<4)	<16	14	18
2.055	$2 \cdot 06$	$21 \cdot 1$	(8)	17	29	26
2.035	2.04	11.4	(7)	23	23	27
1.903	1.90	$21 \cdot 2$	(<4)	<13	12	16
1.865	1.866	$3 \overline{3} \cdot 0$	772	393	355	356
$1 \cdot 809$	$1 \cdot 810$	$11 \cdot 4$	1020	331	318	324
$1 \cdot 721$		$22 \cdot 4$	not resolved		30	30
1.715	$1 \cdot 716$	$33 \cdot 2$	779	309	295	303
1.712		$21 \cdot 3$			4	5
1.615	1.616	$22 \cdot 0$	235	259	266	269
$1 \cdot 588$	$1 \cdot 587$	$22 \cdot 1$	16	47	35	26
$1 \cdot 552$		$31 \cdot 0$	-		9	9
$1 \cdot 538$	$1 \cdot 538$	$11 \cdot 5$	(4)	24	25	24
$1 \cdot 527$		$31 \cdot 1$	(5	13
$1 \cdot 520$		$21 \cdot 4$	-		10	13
$1 \cdot 515$	$1 \cdot 515$	$22 \cdot 2$	462	277	285	297
$1 \cdot 457$	$1 \cdot 457$	$00 \cdot 6$	36	200	235	237
$1 \cdot 418$	$1 \cdot 419$	33.4	254	223	241	250
$1 \cdot 412$		$22 \cdot 3$				17
$1 \cdot 400$		$47 \cdot 0$				11
$1 \cdot 369$	1.37	$31 \cdot 3$	(<4)	< 19	22	19
$1 \cdot 332$		$44 \cdot 2$	not resolved		17	28
$1 \cdot 328$	$1 \cdot 328$	$11 \cdot 6$	270	248	271	280
$1 \cdot 299$	$1 \cdot 299$	22.4	301	269	264	265
$1 \cdot 292$		$25 \cdot 6$			11	5
$1 \cdot 283$	$1 \cdot 28$	$32 \cdot 0$	(4)	31	14	11
$1 \cdot 276$		$32 \cdot 1$			9	6
$1 \cdot 265$	$1 \cdot 26$	$31 \cdot 4$	(<4)	<22	17	18
$1 \cdot 232$		$32 \cdot 2$			8	8
$1 \cdot 221$	$1 \cdot 222$	$41 \cdot 0$	183	224	243	260
$1 \cdot 209$		$41 \cdot 1$			14	9
$1 \cdot 178$		$4 \overline{4} \cdot 4$	not resolved		24	34
$1 \cdot 176$	$1 \cdot 177$	$41 \cdot 2$	385	269	234	236
$1 \cdot 166$		$11 \cdot 7$?		20	20
$1 \cdot 162$		$31 \cdot 5$			16	11
$1 \cdot 147$	$1 \cdot 148$	$33 \cdot 6$	134	202	230	238

All succeeding combinations for which $h-k \neq 3 n$ have calculated intensities less than 1% of background

1.092	1.093	$00 \cdot 8$	46	300	283	291
1.082	1.083	22.6)	284*	220	235	249
1.076	1.078	33.0 \}	$284 *$	263	234	236
1.066	1.067	$41 \cdot 4$	352	232	242	257
1.045	$1 \cdot 047$	33.2	207	242	232	245
1.035	1.036	11.8	144	210	203	214
0.966	0.967	$33 \cdot 4$	110	190	194	201
0.943	$0 \cdot 94$	$33 \cdot 8$			232	236
0.936		41.6	494*		205	207
0.9325	0.9326	66.0 J		200	213	217

[^1]

Fig. 1. c-Axis projection of edge-sharing nets of YbO_{6} octahedra as coordinated about two of the rare earth ions in one half of a low temperature form unit cell. In (a), the profiles of triangular borate ions above this net are indicated by heavy lines to the corners which they share with octahedra, and the positions of ions below the net by light lines. In (b), only the articulation of the three-membered ring of tetrahedra above the net is indicated. Each arrangement surrounds the third rare earth ion with $6 \mathrm{O}(1)$ and $6 \mathrm{O}(2)$ oxygen atoms. In either model the structure is completed by the operation of the mirror planes at $z=\frac{1}{4}$ and $\frac{3}{4} . \mathrm{O}(2)$ oxygen atoms and boron lie in these planes. a_{1} and a_{2} for YbBO_{3} are $6.46 \AA$.

The rare earth cations in special positions are then located at $\frac{1}{2}, \frac{1}{2}, 0$ and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, and each has a coordination environment within its own subcell.

The contributions of the Yb atoms in special positions so dominate the intensities of reflections with $h-k=3 n$ and $l=2 n$ that any placement of anions would afford adequate agreement with a powder diagram, but the eleven weak reflections with $h-k \neq 3 n$ require that the placement of anions in one subcell must differ from that in the other two. Single layers of composition $3 \mathrm{YbBO}_{3}$ which meet this requirement are illustrated in Fig. 1. In each, oxygen atoms in twelvefold positions, designated $\mathrm{O}(1)$, are symmetrically displaced from the averaged subcell positions derived by Newnham, Redman \& Santoro (1963) to provide nets of edge-sharing octahedra about Yb in two subcells. Extinction criteria and this model are consistent with the space group $P \overline{6} c 2$. In $P \overline{6} c 2$, these oxygen atoms are in general positions with $x=\frac{1}{3}, y \simeq 0.05$ and $z=0.117$. The structure is completed by addition of boron and oxygen atoms, designated $\mathrm{O}(2)$, in sixfold positions on the mirror planes at $z=\frac{1}{4}$ and $z=\frac{3}{4}$. These mirror-plane oxygen atoms together with the general position set afford twelvefold coordination about the Yb in the third subcell.

Ordered arrangements in this model can lead either to a triangular boron coordination, analogous with vaterite, or to a three-membered ring of 4-coordinated boron tetrahedra. The two alternatives are illustrated in Fig. 1(a) and (b) respectively. In Fig. 1(a), borate triangles with B-O bond lengths of $1 \cdot 34 \AA$ are indicated in profile, and in Fig. 1(b) four B-O bond lengths of $1.46 \AA$ are assumed.

Calculated amplitudes for the triangular model, 'calculated I', and for the tetrahedral model, 'calculated II', are compared with observed F 's, normalized to agreement for major terms, in Table 1. Each set is a best agreement selected from several slightly varied parameter assumptions. For either set the discrepancy indices for major terms are of the order of $0 \cdot 1$. Three entries for which $h-k=3 n$ with l odd, and eleven entries for which $h-k \neq 3 n$ derive their total amplitudes from anion contributions. Discrepancy indices for these fourteen reflections are respectively 0.25 and 0.34 , but both represent comparisons between two poorly established quantities. The normalized $F_{\text {obs }}$ values for these weak reflections, based on intensities from 10% to less than 5% above background, are necessarily

Table 2. Choice between triangular and tetrahedral arrangement

	Triangular model	Tetrahedral model	Observed
Major term discrepancy index	0.1	0.1	
Discrepancy index for anion-only reflections	0.25	0.34	
Estimated B-O stretching frequency*	1250	1000	$800-1100$
Optic sign	+	+	
Probable birefringence \dagger	near 0.05	0.001 to 0.01	$0.007-0.014$

[^2]subject to large uncertainty, and calculated amplitude sums for low angle reflections are strongly dependent upon arbitrary selection of atomic, ionic, or hybrid scattering factors. The sums cited are for atomic factors. The magnitudes of these discrepancy factors establish that both boron and oxygen are differently placed in different subcells. They indicate that either model is approximately reconciled with the powder data, but do not afford a clear choice between them. Either level of agreement is superior to that possible in the model of Newnham et al. (1963), in which only boron can contribute to amplitudes when $h-k \neq 3 n$.

The tabular habit, with consequent uncertain relation of intensities of prism reflections to those with non-zero l index, and the cited data limitations preclude meaningful additional refinement. A further observation, that greatest excesses of observed amplitudes over calculated involve directions near [110], suggests that the tabular crystallites may actually be dendritic.
A summary of information pertinent to choice between the triangular and tetrahedral arrangements is collected in Table 2. The strict requirements of the optical character and absorption spectral criteria demand the choice of the tetrahedral. Atom parameters for this model are listed in Table 3. The ranges in which other interatomic distances fall when $1.46 \AA$ $\mathrm{B}-\mathrm{O}$ bond lengths are assumed and $\mathrm{O}(1)$ parameters near that adopted for the YbBO_{3} composition are applied to the other rare earth compositions are summarized in Table 4. In all cases octahedrally coordinated cation-oxygen distances approximate known radius sums for octahedral coordination, and cation-oxygen distances in the 12 -coordination polyhedra are about $\frac{1}{8}$ longer.

For the tetrahedral model electrostatic bond strength summations about $\mathrm{O}(1)$ are $\frac{1}{2}$ each to $\mathrm{Yb}(2)$ and $\mathrm{Yb}(3)$, $\frac{1}{4}$ to $\mathrm{Yb}(1)$ and $\frac{3}{4}$ to B , and about $\mathrm{O}(2)$ are $\frac{1}{4}$ each to two $\mathrm{Yb}(1)$ and $\frac{3}{4}$ each to two B.

The high-low inversion

The limited data available in the powder diffraction diagram of high temperature YbBO_{3} taken at $1100^{\circ} \mathrm{C}$ (Levin, Roth \& Martin, 1961) is cited in Table 5.

The inversion to the low temperature form, from an originally synthesized high temperature modification, involves shrinkage in the a directions and expansion along c. For the YbBO_{3}, the a axes shorten from 6.99 to $6.46 \AA$ and the c axis expands from 8.34 to $8.74 \AA$. Nets of edge-sharing octahedra in layer structures generally exhibit layer thicknesses near $2 \cdot 1$ or $2 \cdot 2 \AA$, as is observed for the low temperature form. If the boron and oxygen ions are to be accommodated in the remaining space in the high temperature form they must be present as borate triangles inclined to the c axis. A similar conclusion can be inferred from dimensions of the CaCO_{3} analogue. Its c-axis length of $8.52 \AA$ is interpreted as accommodating Ca octahedra and vertically disposed CO_{3} ions, i.e. an axis nearly $0 \cdot 2 \AA$ lon-

Table 3. Atom parameters in $\mathrm{P} \overline{6} \mathrm{c} 2$ for YbBO_{3} (low temperature form)

12	$\mathrm{O}(1)$	in $\quad 12(l)$		$x, y, z ;$ etc.
				$\underline{z}=0.117$
6	O(2)			$x, y, \frac{1}{4} ;$ etc.
6	B	in	$6(k)$	
2 Yb (1)		in	2(c)	$\frac{1}{3}, \frac{2}{3}, 0 ; \frac{1}{3}, \frac{2}{3}, \frac{1}{2}$
$2 \mathrm{Yb}(2)$		in	2(e)	$\frac{2}{3}, \frac{1}{3}, 0 ; \frac{3}{3}, \frac{1}{3}, \frac{1}{2}$
$2 \mathrm{Yb}(3)$		in	2(a)	$0,0,0 ; 0,0, \frac{1}{2}$

Table 4. Internally consistent interatomic distances in the low temperature vaterite-type rare earth borate compositions (Lu to Sm) based on $1.46 \AA$ for B-O in tetrahedra

	When $y_{0(1)}=0.04$	When $y_{0(1)}=0.05$
$\mathrm{Lu}(1)-\mathrm{O}(1)$	$2 \cdot 62$	$2 \cdot 68$
$\mathrm{Sm}(1)-\mathrm{O}(1)$	2.71	$2 \cdot 77$
$\mathrm{Lu}(1)-\mathrm{O}(2)$	$2 \cdot 63$	
to		
$\mathrm{Sm}(1)-\mathrm{O}(2)$	2.71	
$\mathrm{Lu}(2)$, (3)-O(1)	$2 \cdot 28$	$2 \cdot 26$
to		
$\mathrm{Sm}(2),(3)-\mathrm{O}(1)$	2.37	$2 \cdot 34$
$\mathrm{O}(1)-\mathrm{O}(1)$ (shared edge)		
in Lu	2.61	$2 \cdot 53$
in Sm	$2 \cdot 74$	$2 \cdot 66$
$\mathrm{O}(1)-\mathrm{O}(1)$ (out of plane)		
in Lu in Sm	$3 \cdot 13$	3.21 3.36
in Sm	$3 \cdot 30$	$3 \cdot 36$
$\mathrm{O}(1)-\mathrm{O}(1)$ (in plane)		
in Lu	3.51	3.47
in Sm	$3 \cdot 64$	$3 \cdot 60$
$\mathrm{O}(2)-\mathrm{O}(2)$ (shared face)		
in Lu		$2 \cdot 54$
in Sm		$2 \cdot 63$

Table 5. Powder diffraction diagram for YbBO_{3} taken at $1100^{\circ} \mathrm{C}$
Probable space group $P 6_{3} 22: a_{0}=6.99, c_{0}=8.34 \AA$ Filtered Cu radiation

$d_{\text {obs }}(\AA)$	$h k \cdot l$	Relative intensity
$4 \cdot 16$	$00 \cdot 2$	5
$3 \cdot 49$	11.0	10
$3 \cdot 22$	$11 \cdot 1$	$\frac{1}{2}$
$3 \cdot 04$	$20 \cdot 0$	$<\frac{1}{2}$
$2 \cdot 87$	$20 \cdot 1$	< $\frac{1}{2}$
$2 \cdot 67$	$11 \cdot 2$	10
$2 \cdot 44$	$20 \cdot 2$	tr
$2 \cdot 28$	21.0	tr
2.08	00.4	1
2.05	$20 \cdot 3$	tr
2.015	$30 \cdot 0$	2
1.815	30.2	2
1.789	11.4	2
$1 \cdot 745$	$22 \cdot 0$	1
1.71	$22 \cdot 1$	tr
$1 \cdot 605$	$22 \cdot 2$	$2 \frac{1}{2}$
$1 \cdot 51$	$40 \cdot 0$	$<\frac{1}{2}$
$1 \cdot 450$	$30 \cdot 4$	$1 \frac{1}{2}$
$1 \cdot 39$	$00 \cdot 6$	tr
$1 \cdot 341$	22.4	1
$1 \cdot 321$	41.0	$\frac{1}{2}$
$1 \cdot 292$	$11 \cdot 6$	1
$1 \cdot 260$	$41 \cdot 2$	1

ger accommodates anions of $0 \cdot 1 \AA$ smaller mutual $\mathrm{O}-\mathrm{O}$ contacts.

A shared-edge arrangement of Yb octahedra, condensed with tilted triangular anions, can be described in the space group $P 6_{3} 22$. This space group permits contributions by the anion to the amplitude of both the classes $h h l$ with l odd and $h h l$ with l odd. Two powder lines of each class are observed. Fig. 2 depicts one layer of the expanded octahedral net with the two sets of three tilted triangular borate ions respectively above and below the octahedra. Only one (dashed) of the lower set is indicated. In $P 6_{3} 22$ the Yb are located at $z=\frac{1}{4}$ and the structure is completed by the twofold operators on the a axes at $z=0$ and $\frac{1}{2}$. The net which is foreshortened by edge sharing affords octahedral environment to the Yb in positions $0,0, \frac{1}{4}$ and $0,0, \frac{3}{4}$. The columns of polyhedra about Yb at $\frac{1}{3}, \frac{2}{3}$ and $\frac{2}{3}, \frac{1}{3}$ are alternately large and small twelvefold environments related to each other by the twofold axes. In Fig. 2 the oxygen atoms in twelvefold equivalent positions are arbitrarily located at $x=0.32, y=0.07$. This provides room for borate triangles with B-O bond lengths near $1.35 \AA$ and $\mathrm{Yb}-\mathrm{O}$ distances of $2.26 \AA$ in

Fig.2. c-Axis projection of a stretched net of edge-sharing octahedra like the Fig. 1 arrangements, but affording room for successive nets to be articulated by tilted triangular borate ions. The structure is completed by twofold rotation about a axes at $z=0$ and $\frac{1}{2}$. O (2) oxygen atoms and boron lie on these axes. a_{1} and a_{2} are $6.99 \AA$.
the octahedron about $0,0, \frac{3}{4}$. In the polyhedra of the 12 -coordinated Yb one has six $\mathrm{Yb}-\mathrm{O}$ distances near 2.4 and six near $2.9 \AA$; the other has twelve near $2.9 \AA$.

Although the arrangement of Fig. 2 must be taken as highly speculative, it permits reasonable inferences. The oxygen atoms in sixfold positions in either structure move furthest in the inversion. For example, the oxygen at $x=0.43, y=0.43$ in the high temperature form moves to $x=\frac{1}{3}, y=0.44$ in the low temperature form. It may be presumed to have the greatest individual thermal amplitude. If, with declining thermal motion, $\mathrm{O}(1)$ oxygen are to seek equal $\mathrm{Yb}-\mathrm{O}$ bond lengths to their three Yb neighbors, the triangular borate ions must rotate to vertical, expanding the \mathbf{c} direction, shrinking the lateral net, and permitting the condensation into three-membered rings of borate tetrahedra in one or the other of the low temperature subcells.

With respect to any one layer in this high temperature model, a vertical set of triangles locate twelvefold oxygen in one ordered choice from among the 36 alternatives of the disordered array adopted by Kamhi (1963) for CaCO_{3} vaterite. The parameters $x=0 \cdot 32$, $y=0.07$ of the $\mathrm{O}(2)$ oxygen (Fig.2) become $x=0.39$, $y=0.78$ when referred to Kamhi's subcell. His solution (for CaCO_{3}) was $x=0.38, y=0 \cdot 76$. The other six oxygen atoms are in an ordered sixfold choice with parameters approximating Kamhi's in magnitude, but opposite in sign.

The authors would like to thank Dr H.M. Ondik and Mr C.E. Weir for many informative discussions.

References

Bartram, S. F. \& Felten, E. J. (1961). Rare Earth Research Proc. 2nd Conf. Sept. 24-27, 1961. Ed. J. F. Nachman and C. E. Lundin; Gordon and Breach Publishers (1962).
Bunn, C. W. (1945). Chemical Crystallography. Oxford.
Kamh, S. R. (1963). Acta Cryst. 16, 770.
Levin, E. M., Roth, R. S. \& Martin, J. B. (1961). Amer. Min. 46, 1030.
McConnell, J. D. C. (1960). Miner. Mag. 32, 535.
Newnham, R. E., Redman, M. J. \& Santoro, R. P. (1963). J. Amer. Ceram. Soc. 46, 253.

Weir, C. E. \& Lippincott, E. R. (1961). J. Res. Nat. Bur. Stands. 65A, 173.
Weir, C. E. \& Schroeder, R. A. (1964). J. Res. Nat. Bur. Stands. 68A, 465.

[^0]: * This work was done in part at the Computation Center of the Massachusetts Institute of Technology, during the tenure of a Research Fellowship extended to D.L. Graf by the Committee on Experimental Geology and Geophysics of Harvard University.

[^1]: * Two high angle complex features marked with an asterisk had superimposed on them enough α_{1} / α_{2} resolution for the prism member to permit that it be estimated separately.
 \dagger Five entries for which counts were between 5 and 10% of background are enclosed in parentheses and six lesser counts are similarly indicated. The count for $22 \cdot 1$ was 20% above background.

[^2]: * From Weir \& Schroeder (1964). They also cite absence of sufficiently large isotropic shift in any frequency which could be attributed to an out-of-plane bending mode for a triangular anion.
 \dagger Predicted by comparison with InBO_{3} and $\mathrm{R}_{2} \mathrm{O}_{3}$ rhombohedral oxides respectively.

